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9.1 Two-Dimensional Electronic Systems

One of the most important recent developments in semiconductors, both from the point of
view of physics and for the purpose of device developments, has been the achievement of
structures in which the electronic behavior is essentially two-dimensional (2D). This means
that, at least for some phases of operation of the device, the carriers are confined in a
potential such that their motion in one direction is restricted and thus is quantized, leaving
only a two-dimensional momentum or k-vector which characterizes motion in a plane normal
to the confining potential. The major systems where such 2D behavior has been studied
are MOS structures, quantum wells and superlattices. More recently, quantization has been
achieved in 1-dimension (the quantum wires) and “zero”–dimensions (the quantum dots).
These topics are further discussed in Chapter 10 and in the course on semiconductor physics
(6.735J).

9.2 MOSFETS

One of the most useful and versatile of these structures is the metal-insulator-semiconductor
(MIS) layered structures, the most important of these being the metal-oxide-semiconductor
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Figure 9.1: Cross-sectional view of the basic MOSFET structure showing the terminal
designations and standard biasing conditions.

(MOS) structures. As shown in Fig. 9.1, the MOS device is fabricated from a substrate
of usually moderately-doped p-type or n-type silicon which together with its grounded
electrode is called the base and labeled B in the figure. On the top of the base is grown
an insulating layer of silicon dioxide, followed by a metal layer; this structure is the gate
(labeled G in the figure) and is used to apply an electric field through the oxide to the
silicon. For the MOS device shown in the figure the base region is p-type and the source
(S) and drain (D) regions are n-type. Measurements of the changes in the properties of
the carriers in the silicon layer immediately below the gate (the conductance in the source-
drain channel), in response to changes in the applied electric field at the gate electrode,
are called field-effect measurements. As we show below, the field dramatically changes the
conducting properties of the carriers beneath the gate. Use is made of this effect in the
so-called metal-oxide-semiconductor field-effect transistor (MOSFET). To understand the
operation of this device,we first consider the schematic energy band diagram of the MOS
structure as shown in Fig. 9.2, for four different values of VG, the gate potential relative to
the substrate. For each VG value, the diagram shows from left to right the metal (M) -
oxide (O) - semiconductor (S) regions. In the semiconductor regions each of the diagrams
show from top to bottom: the Si conduction band edge Ec, the “intrinsic” Fermi level for
undoped Si as the dashed line, the Fermi level EF in the p-type Si, and the valence band
edge Ev. In each diagram, the central oxide region shows the valence band edge for the
oxide. On the left hand side of each diagram, the Fermi level for the metal is shown and
the dashed line gives the extension of the Si Fermi level. In the lower part of the figure, the
charge layers of the interfaces for each case are illustrated.

We now explain the diagrams in Fig. 9.2 as a function of the gate voltage VG. For
VG = 0 (the flat-band case), there are (ideally) no charge layers, and the energy levels
of the metal (M) and semiconducting (S) regions line up to yield the same Fermi level
(chemical potential). The base region is doped p-type. For a negative gate voltage (VG < 0,
the accumulation case), an electric field is set up in the oxide. The negative gate voltage
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Figure 9.2: Energy band and block charge diagrams for a p–type device under flat band,
accumulation, depletion and inversion conditions.

causes the Si bands to bend up at the oxide interface (see Fig. 9.2) so that the Fermi level
is closer to the valence-band edge. Thus extra holes accumulate at the semiconductor-oxide
interface and electrons accumulate at the metal-oxide interface (see lower part of Fig. 9.2).
In the third (depletion) case, the gate voltage is positive but less than some threshold
value VT . The voltage VT is defined as the gate voltage where the intrinsic Fermi level
and the actual Fermi level are coincident at the interface (see lower part of Fig. 9.2). For
the “depletion” regime, the Si bands bend down at the interface resulting in a depletion of
holes, and a negatively charged layer of localized states is formed at the semiconductor-oxide
interface. The size of this “depletion region” increases as VG increases. The corresponding
positively charged region at the metal-oxide interface is also shown. Finally, for VG > VT ,
the intrinsic Fermi level at the interface drops below the actual Fermi level, forming the
“inversion layer”, where mobile electrons reside. It is the electrons in this inversion layer
which are of interest, both because they can be confined so as to exhibit two-dimensional
behavior, and because they can be controlled by the gate voltage in the MOSFET (see
Fig. 9.3)

The operation of a metal-oxide semiconductor field-effect transistor (MOSFET) is illus-
trated in Fig. 9.3, which shows the electron inversion layer under the gate for VG > VT (for
a p-type substrate), with the source region grounded, for various values of the drain voltage
VD. The inversion layer forms a conducting “channel” between the source and drain (as
long as VG > VT ). The dashed line in Fig. 9.3 shows the boundaries of the depletion region
which forms in the p-type substrate adjoining the n+ and p regions.

For VD = 0 there is obviously no current between the source and the drain since both are
at the same potential. For VD > 0, the inversion layer or channel acts like a resistor, inducing
the flow of electric current ID. As shown in Fig. 9.3, increasing VD imposes a reverse bias
on the n+-p drain-substrate junction, thereby increasing the width of the depletion region
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Figure 9.3: Visualization of various phases of VG > VT MOSFET operation. (a) VD = 0,
(b) channel (inversion layer) narrowing under moderate VD biasing, (c) pinch–off, and (d)
post-pinch-off (VD > VDsat) operation. (Note that the inversion layer widths, depletion
widths, etc. are not drawn to scale.)
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Figure 9.4: General form of the ID − VD

characteristics expected from a long channel
(∆L ¿ L) MOSFET.

and decreasing the number of carriers and narrowing the channel in the inversion layer as
shown in Fig. 9.3. Finally as VD increases further, the channel reaches the “pinched-off”
condition VDsat shown in Fig. 9.3c. Further increase in VD does not increase ID but rather
causes “saturation”. We note that at saturation, VDsat = VG − VT . Saturation is caused by
a decrease in the carrier density in the channel due to the pinch-off phenomena.

In Fig. 9.4 ID vs. VD curves are plotted for fixed values of VG > VT . We note that VDsat

increases with increasing VG. These characteristic curves are qualitatively similar to the
curves for the bipolar junction transistor. The advantage of MOSFET devices lie in the
speed of their operation and in the ease with which they can be fabricated into ultra-small
devices.

The MOSFET device, or an array of a large number of MOSFET devices, is fabricated
starting with a large Si substrate or “wafer”. At each stage of fabrication, areas of the
wafer which are to be protected are masked off using a light-sensitive substance called
photoresist, which is applied as a thin film, exposed to light (or an electron or x-ray beam)
through a mask of the desired pattern, then chemically developed to remove the photoresist
from only the exposed (or, sometimes only the un–exposed) area. First the source and
drain regions are formed by either diffusing or implanting (bombarding) donor ions into
the p-type substrate. Then a layer of SiO2 (which is an excellent and stable insulator) is
grown by exposing the desired areas to an atmosphere containing oxygen; usually only a
thin layer is grown over the gate regions and, in a separate step, thicker oxide layers are
grown between neighboring devices to provide electrical isolation. Finally, the metal gate
electrode, the source and drain contacts are formed by sputtering or evaporating a metal
such as aluminum onto the desired regions.

9.3 Two-Dimensional Behavior

Other systems where two-dimensional behavior has been observed include heterojunctions
of III-V compounds such as GaAs/Ga1−xAlxAs, layer compounds such as GaSe, GaSe2

and related III-VI compounds, graphite and intercalated graphite, and electrons on the
surface of liquid helium. The GaAs/Ga1−xAlxAs heterojunctions are important for device
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applications because the lattice constants and the coefficient of expansion of GaAs and
Ga1−xAlxAs are very similar. This lattice matching permits the growth of high mobility
thin films of Ga1−xAlxAs on a GaAs substrate.

The interesting physical properties of the MOSFET lie in the two-dimensional behav-
ior of the electrons in the channel inversion layer at low temperatures. Studies of these
electrons have provided important tests of modern theories of localization, electron-electron
interactions and many-body effects. In addition, the MOSFETs have exhibited a highly
unexpected property that, in the presence of a magnetic field normal to the inversion layer,
the transverse or Hall resistance ρxy is quantized in integer values of e2/h. This quantiza-
tion is accurate to parts in 107 or 108 and provides the best measure to date of the fine
structure constant α = e2/hc, when combined with the precisely-known velocity of light c.
We will further discuss the quantized Hall effect later in the course (Part III).

We now discuss the two-dimensional behavior of the MOSFET devices in the absence
of a magnetic field. The two-dimensional behavior is associated with the nearly plane wave
electron states in the inversion layer. The potential V (z) is associated with the electric field
V (z) = eEz and because of the negative charge on the electron, a potential well is formed
containing bound states described by quantized levels. A similar situation occurs in the
two–dimensional behavior for the case of electrons in quantum wells produced by molecular
beam epitaxy. Explicit solutions for the bound states in quantum wells are given in §9.4.
We discuss in the present section the form of the differential equation and of the resulting
eigenvalues and eigenfunctions.

A single electron in a one-dimensional potential well V (z) will, from elementary quantum
mechanics, have discrete allowed energy levels En corresponding to bound states and usually
a continuum of levels at higher energies corresponding to states which are not bound. An
electron in a bulk semiconductor is in a three-dimensional periodic potential. In addition the
potential causing the inversion layer of a MOSFET or a quantum well in GaAs/Ga1−xAlxAs
can be described by a one-dimensional confining potential V (z) and can be written using
the effective-mass theorem

[E(−i~∇) + H′]Ψ = ih̄

(
∂Ψ

∂t

)

(9.1)

where H′ = V (z). The energy eigenvalues near the band edge can be written as

E(~k) = E(~k0) +
1

2

∑

i,j

(
∂2E

∂ki∂kj

)

kikj (9.2)

so that the operator E(−i~∇) in Eq. 9.1 can be written as

E(−i~∇) =
∑

i,j

pipj

2mi,j
(9.3)

where the pi’s are the operators

pi =
h̄

i

∂

∂xi
(9.4)

which are substituted into Schrödinger’s equation. The effect of the periodic potential is
contained in the reciprocal of the effective mass tensor

1

mij
=

1

h̄2

∂2E(~k)

∂ki∂kj

∣
∣
∣
∣
~k= ~k0

(9.5)
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where the components of 1/mij are evaluated at the band edge at ~k0.
If 1/mij is a diagonal matrix, the effective-mass equation HΨ = EΨ is solved by a

function of the form
Ψn,kx,ky = eikxxeikyyfn(z) (9.6)

where fn(z) is a solution of the equation

− h̄2

2mzz

d2fn

dz2
+ V (z)fn = En,zfn (9.7)

and the total energy is

En(kx, ky) = En,z +
h̄2

2mxx
k2

x +
h̄2

2myy
k2

y. (9.8)

Since the En,z energies (n=0,1,2,...) are discrete, the energies states En(kx, ky) for each n
value form a “sub-band”. We give below (in §9.3.1) a simple derivation for the discrete
energy levels by considering a particle in various potential wells (i.e., quantum wells). The
electrons in these “sub–bands” form a 2D electron gas.

9.3.1 Quantum Wells and Superlattices

Many of the quantum wells and superlattices that are commonly studied today do not
occur in nature, but rather are deliberately structured materials (see Fig. 9.5). In the case of
superlattices formed by molecular beam epitaxy, the quantum wells result from the different
bandgaps of the two constituent materials. The additional periodicity is in one–dimension
(1–D) which we take along the z–direction, and the electronic behavior is usually localized
on the basal planes (x–y planes) normal to the z–direction, giving rise to two–dimensional
behavior.

A schematic representation of a semiconductor heterostructure superlattice is shown in
Fig. 9.5 where d is the superlattice periodicity composed of a distance d1, of semiconductor
S1, and d2 of semiconductor S2. Because of the different band gaps in the two semiconduc-
tors, potential wells and barriers are formed. For example in Fig. 9.5, the barrier heights in
the conduction and valence bands are ∆Ec and ∆Ev respectively. In Fig. 9.5 we see that the
difference in bandgaps between the two semiconductors gives rise to band offsets ∆Ec and
∆Ev for the conduction and valence bands. In principle, these band offsets are determined
by matching the Fermi levels for the two semiconductors. In actual materials, the Fermi
levels are highly sensitive to impurities, defects and charge transfer at the heterojunction
interface.

The two semiconductors of a heterojunction superlattice could be different semiconduc-
tors such as InAs with GaP (see Table 9.1 for parameters related to these compounds) or a
binary semiconductor with a ternary alloy semiconductor, such as GaAs with AlxGa1−xAs
(sometimes referred to by their slang names “Gaas” and “Algaas”). In the typical semicon-
ductor superlattices the periodicity d = d1 + d2 is repeated many times (e.g., 100 times).
The period thicknesses typically vary between a few layers and many layers (10Å to 500Å).
Semiconductor superlattices are today an extremely active research field internationally.

The electronic states corresponding to the heterojunction superlattices are of two funda-
mental types–bound states in quantum wells and nearly free electron states in zone–folded
energy bands. In this course, we will limit our discussion to the bound states in a single
infinite quantum well. Generalizations to multiple quantum wells will be made subsequently.
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Figure 9.5: (a) A heterojunction superlattice of periodicity d. (b) Each superlattice unit cell
consists of a thickness d1 of material #1 and d2 of material #2. Because of the different band
gaps, a periodic array of potential wells and potential barriers is formed. When the band
offsets are both positive as shown in this figure, the structure is called a type I superlattice.

Figure 9.6: The eigenfunctions and bound
state energies of an infinitely deep potential
well used as an approximation to the states
in two finite wells. The upper well applies to
electrons and the lower one to holes. This dia-
gram is a schematic representation of a quan-
tum well in the GaAs region formed by the ad-
jacent wider gap semiconductor AlxGa1−xAs.
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Table 9.1: Material parameters of GaAs, GaP, InAs, and InP.1

Property Parameter (units) GaAs GaP InAs InP

Lattice constant a(Å) 5.6533 5.4512 6.0584 5.8688
Density g(g/cm3) 5.307 4.130 5.667 4.787
Thermal expansion αth(×10−6/◦C) 6.63 5.91 5.16 4.56
Γ point band gap E0(eV) 1.42 2.74 0.36 1.35

plus spin orbit E0 + ∆0(eV) 1.76 2.84 0.79 1.45
L point band gap E1(eV) 2.925 3.75 2.50 3.155

plus spin orbit E1 + ∆1(eV) 3.155 . . . 2.78 3.305
Γ point band gap E0

′(eV) 4.44 4.78 4.44 4.72
∆ axis band gap E2(eV) 4.99 5.27 4.70 5.04

plus spin orbit E2 + δ(eV) 5.33 5.74 5.18 5.60
Gap pressure coefficient ∂E0/∂P (×10−6eV/bar) 11.5 11.0 10.0 8.5
Gap temperature coefficient ∂E0/∂T (×10−4eV/◦C) −3.95 −4.6 −3.5 −2.9
Electron mass m∗/m0 0.067 0.17 0.023 0.08

light hole m`h
∗/m0 0.074 0.14 0.027 0.089

heavy hole mhh
∗/m0 0.62 0.79 0.60 0.85

spin orbit hole mso
∗/m0 0.15 0.24 0.089 0.17

Dielectric constant: static εs 13.1 11.1 14.6 12.4
Dielectric constant: optic ε∞ 11.1 8.46 12.25 9.55
Ionicity f1 0.310 0.327 0.357 0.421
Polaron coupling αF 0.07 0.20 0.05 0.08
Elastic constants c11(×1011dyn/cm2) 11.88 14.120 8.329 10.22

c12(×1011dyn/cm2) 5.38 6.253 4.526 5.76
c44(×1011dyn/cm2) 5.94 7.047 3.959 4.60

Young’s modulus Y (×1011dyn/cm2) 8.53 10.28 5.14 6.07
P 0.312 0.307 0.352 0.360

Bulk modulus B(×1011 dyn/cm2) 7.55 8.88 5.79 7.25
A 0.547 0.558 0.480 0.485

Piezo–electric coupling e14(C/m2) −0.16 −0.10 −0.045 −0.035
K[110] 0.0617 0.0384 0.0201 0.0158

Deformation potential a(eV) 2.7 3.0 2.5 2.9
b(eV) −1.7 −1.5 −1.8 −2.0
d(eV) −4.55 −4.6 −3.6 −5.0

Deformation potential Ξeff (eV) 6.74 6.10 6.76 7.95
Donor binding G(meV) 4.4 10.0 1.2 5.5
Donor radius aB(Å) 136 48 406 106
Thermal conductivity κ(watt/deg − cm) 0.46 0.77 0.273 0.68
Electron mobility µn(cm2/V − sec) 8000 120 30000 4500
Hole mobility µp(cm

2/V − sec) 300 – 450 100

1Table from J. Appl. Physics 53, 8777 (1982).
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9.4 Bound Electronic States

From the diagram in Fig. 9.5 we see that the heterojunction superlattice consists of an
array of potential wells. The interesting limit to consider is the case where the width of the
potential well contains only a small number of crystallographic unit cells (Lz < 100 Å), in
which case the number of bound states in the well is a small number.

From a mathematical standpoint, the simplest case to consider is an infinitely deep
rectangular potential well. In this case, a particle of mass m∗ in a well of width Lz in the
z direction satisfies the free particle Schrödinger equation

− h̄2

2m∗
d2ψ

dz2
= Eψ (9.9)

with eigenvalues

En =
h̄2

2m∗

(
nπ

Lz

)2

=

(
h̄2π2

2m∗L2
z

)

n2 (9.10)

and the eigenfunctions

ψn = A sin(nπz/Lz) (9.11)

where n = 1,2,3.... are the plane wave solutions that satisfy the boundary conditions that
the wave functions in Eq. 9.11 must vanish at the walls of the quantum wells (z = 0 and
z = Lz).

We note that the energy levels are not equally spaced, but have energies En ∼ n2, though
the spacings En+1 −En are proportional to n. We also note that En ∼ Lz

−2, so that as Lz

becomes large, the levels become very closely spaced as expected for a 3D semiconductor.
However when Lz decreases, the number of states in the quantum well decreases, so that
for a well depth Ed it would seem that there is a critical width Lz

c below which there would
be no bound states

Lz
c =

h̄π

(2m∗Ed)
1

2

. (9.12)

An estimate for Lz
c is obtained by taking m∗ = 0.1m0 and Ed = 0.1 eV to yield Lz

c = 61Å.
There is actually a theorem in quantum mechanics that says that there will be at least
one bound state for an arbitrarily small potential well. More exact calculations considering
quantum wells of finite thickness have been carried out, and show that the infinite well
approximation gives qualitatively correct results.

The closer level spacing of the valence band bound states in Fig. 9.6 reflects the heav-
ier masses in the valence band. Since the states in the potential well are quantized, the
structures in Figs. 9.5 and 9.6 are called quantum well structures.

If the potential energy of the well V0 is not infinite but finite, the wave functions are
similar to those given in Eq. 9.11, but will have decaying exponentials on either side of the
potential well walls. The effect of the finite size of the well on the energy levels and wave
functions is most pronounced near the top of the well. When the particle has an energy
greater than V0, its eigenfunction corresponds to a continuum state exp(ikzz).

In the case of MOSFETs, the quantum well is not of rectangular shape as shown in
Fig. 9.7, but rather is approximated as a triangular well. The solution for the bound states
in a triangular well cannot be solved exactly, but can only be done approximately, as for
example using the WKB approximation described in §9.6.
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Figure 9.7: Schematic of a potential barrier.
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9.5 Review of Tunneling Through a Potential Barrier

When the potential well is finite, the wave functions do not completely vanish at the walls
of the well, so that tunneling through the potential well becomes possible. We now briefly
review the quantum mechanics of tunneling through a potential barrier. We will return to
tunneling in semiconductor heterostructures after some introductory material.

Suppose that the potential V shown in Fig. 9.7 is zero (V = 0) in regions #1 and #3,
while V = V0 in region #2. Then in regions #1 and #3

E =
h̄2k2

2m∗ (9.13)

ψ = eikz (9.14)

while in region #2 the wave function is exponentially decaying

ψ = ψ0e
−βz (9.15)

so that substitution into Schrödinger’s equation gives

−h̄2

2m∗β2ψ + (V0 − E)ψ = 0 (9.16)

or

β2 =
2m∗

h̄2 (V0 − E). (9.17)

The probability that the electron tunnels through the rectangular potential barrier is then
given by

P = exp

{

− 2

∫ Lz

0
β(z)dz

}

= exp

{

− 2

(
2m∗

h̄2

) 1

2

(V0 − E)
1

2 Lz

}

(9.18)

As Lz increases, the probability of tunneling decreases exponentially. Electron tunneling
phenomena frequently occur in solid state physics.

9.6 Quantum Wells of Different Shape and the WKB Ap-

proximation

With the sophisticated computer control available with state of the art molecular beam epi-
taxy systems it is now possible to produce quantum wells with specified potential profiles
V (z) for semiconductor heterojunction superlattices. Potential wells with non–rectangular

150



Figure 9.8: Schematic of a rectangular well.
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profiles also occur in the fabrication of other types of superlattices (e.g., by modulation dop-
ing). We therefore briefly discuss (in the recitation class) bound states in general potential
wells.

In the general case where the potential well has an arbitrary shape, solution by the WKB
(Wentzel–Kramers–Brillouin) approximation is very useful (see for example, Shanker, “Prin-
ciples of Quantum Mechanics”, Plenum press, chapter 6). According to this approximation,
the energy levels satisfy the Bohr–Sommerfeld quantization condition

∫ z2

z1

pzdz = h̄π(r + c1 + c2) (9.19)

where pz = (2m∗[E − V ])
1

2 and the quantum number r is an integer r = 0, 1, 2, . . . while c1

and c2 are the phases which depend on the form of V (z) at the turning points z1 and z2

where V (zi) = E. If the potential has a sharp discontinuity at a turning point, then c =
1/2, but if V depends linearly on z at the turning point then c = 1/4.

For example for the infinite rectangular well (see Fig. 9.8)

V (z) = 0 for | z |< a (inside the well) (9.20)

V (z) = ∞ for | z |> a (outside the well) (9.21)

By the WKB rules, the turning points occur at the edges of the rectangular well and

therefore c1 = c2 = 1/2. In this case pz is a constant, independent of z so that pz = (2m∗E)
1

2

and Eq. 9.19 yields

(2m∗E)
1

2 Lz = h̄π(r + 1) = h̄πn (9.22)

where n = r + 1 and

En =
h̄2π2

2m∗Lz
2 n2 (9.23)

in agreement with the exact solution given by Eq. 9.10. The finite rectangular well shown
in Fig. 9.8 is thus approximated as an infinite well with solutions given by Eq. 9.10.

As a second example consider a harmonic oscillator potential well shown in Fig. 9.9,
where V (z) = m∗ω2z2/2. The harmonic oscillator potential well is typical of quantum
wells in periodically doped (nipi which is n-type; insulator; p-type; insulator) superlattices.
In this case

pz = (2m∗)1/2
(

E − m∗ω2

2
z2

) 1

2

. (9.24)

The turning points occur when V (z) = E so that the turning points are given by z =

±(2E/m∗ω2)
1

2 . Near the turning points V (z) is approximately linear in z, so the phase
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Figure 9.9: Schematic of a harmonic oscillator well.

Figure 9.10: Schematic of a triangular well.
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factors become c1 = c2 = 1
4 . The Bohr–Sommerfeld quantization thus yields

∫ z2

z1

pzdz =

∫ z2

z1

(2m∗)
1

2

(

E − m∗ω2

2
z2

) 1

2

dz = h̄π(r +
1

2
). (9.25)

Making use of the integral relation

∫
√

a2 − u2 du =
u

2

√

a2 − u2 +
a2

2
sin−1 u

a
(9.26)

we obtain upon substitution of Eq. 9.26 into 9.25:

(2m∗)
1

2

(

m∗ω2

2

) 1

2
(

Er

m∗ω2

)

π =
Erπ

ω
= h̄π(r +

1

2
) (9.27)

which simplifies to the familiar relation for the harmonic oscillator energy levels:

Er = h̄ω(r +
1

2
) where r = 0, 1, 2... (9.28)

another example of an exact solution. For homework, you will use the WKB method to find
the energy levels for an asymmetric triangular well. Such quantum wells are typical of the
interface of metal–insulator–semiconductor (MOSFET) device structures (see Fig. 9.10).

9.7 The Kronig–Penney Model

We review here the Kronig–Penney model which gives an explicit solution for a one–
dimensional array of finite potential wells shown in Fig. 9.11. Starting with the one di-
mensional Hamiltonian with a periodic potential (see Eq. 9.7)

− h̄2

2m∗
d2ψ

dz2
+ V (z)ψ = Eψ (9.29)
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Figure 9.11: Kronig–Penney square well periodic potential

we obtain solutions in the region 0 < z < a where V (z) = 0

ψ(z) = AeiKz + Be−iKz (9.30)

E =
h̄2K2

2m∗ (9.31)

and in the region −b < z < 0 where V (z) = V0 (the barrier region)

ψ(z) = Ceβz + De−βz (9.32)

where

β2 =
2m∗

h̄2 [V0 − E]. (9.33)

Continuity of ψ(z) and dψ(z)/dz at z = 0 and z = a determines the coefficients A, B, C, D.
At z = 0 we have:

A + B=C + D

iK(A − B)=β(C − D)

(9.34)

At z = a, we apply Bloch’s theorem (see Fig. 9.11), introducing a factor exp[ik(a + b)] to
obtain ψ(a) = ψ(−b) exp[ik(a + b)]

AeiKa + Be−iKa=(Ce−βb + Deβb)eik(a+b)

iK(AeiKa − Be−iKa)=β(Ce−βb − Deβb)eik(a+b).

(9.35)

These 4 equations (Eqs. 9.34 and 9.35) in 4 unknowns determine A, B, C, D. The vanishing
of the coefficient determinant restricts the conditions under which solutions to the Kronig–
Penney model are possible, leading to the algebraic equation

β2 − K2

2βK
sinh βb sin Ka + cosh βb cos Ka = cos k(a + b) (9.36)

which has solutions for a limited range of β values.
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Figure 9.12: Plot of energy vs. k for the
Kronig–Penney model with P = 3π/2. (Af-
ter Sommerfeld and Bethe.)

Normally the Kronig–Penney model in the textbooks is solved in the limit b → 0 and
V0 → ∞ in such a way that [β2ba/2] = P remains finite. The restricted solutions in this
limit lead to the energy bands shown in Fig. 9.12.

For the superlattice problem we are interested in solutions both within the quantum wells
and in the continuum. This is one reason for discussing the Kronig–Penny model. Another
reason for discussing this model is because it provides a review of boundary conditions and
the application of Bloch’s theorem. In the quantum wells, the permitted solutions give
rise to narrow bands with large band gaps while in the continuum regions the solutions
correspond to wide bands and small band gaps.

9.8 3D Motion within a 1–D Rectangular Well

The thin films used for the fabrication of quantum well structures (see §9.4) are very thin
in the z–direction but have macroscopic size in the perpendicular x–y plane. An example
of a quantum well structure would be a thin layer of GaAs sandwiched between two thicker
AlxGa1−xAs layers, as shown in the Fig. 9.5. For the thin film, the motion in the x and
y directions is similar to that of the corresponding bulk solid which can be treated by the
conventional 1–electron approximation and the Effective Mass Theorem. Thus the potential
can be written as a sum of a periodic term V (x, y) and the quantum well term V (z). The
electron energies thus are superimposed on the quantum well energies, the periodic solutions
obtained from solution of the 2–D periodic potential

En(kx, ky) = En,z +
h̄2(k2

x + k2
y)

2m∗ = En,z + E⊥ (9.37)
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Figure 9.13: Subbands associated with bound
states for the 2D electron gas.

in which the quantized bound state energies En,z are given by Eq. 9.10. A plot of the
energy levels is given in Fig. 9.13. At (kx, ky) = (0,0) the energy is precisely the quantum
well energy En for all n. The band of energies associated with each state n is called a
subband.

Of particular interest is the density of states for the quantum well structures. Associated
with each two–dimensional subband is a constant density of states, as derived below. From
elementary considerations the number of electrons per unit area in a 2–dimensional circle
is given by

N2D =
2

(2π)2
πk2

⊥ (9.38)

where k2
⊥ = k2

x + k2
y and

E⊥ =
h̄2k2

⊥
2m∗ (9.39)

so that for each subband the density of states g2D(E) contribution becomes

∂N2D

∂E
= g2D(E) =

m∗

πh̄2 . (9.40)

If we now plot the density of states corresponding to the 3D motion in a 1–D rectangular
well, we have g2D(E) = 0 until the bound state energy E1 is reached, when a step function
contribution of (m∗/πh̄2) is made. The density of states g2D(E) will then remain constant
until the minimum of subband E2 is reached when an additional step function contribution
of (m∗/πh̄2) is made, hence yielding the staircase density of states shown in Fig. 9.14. Two
generalizations of Eq. 9.40 for the density of states for actual quantum wells are needed,
as we discuss below. The first generalization takes into account the finite size Lz of the
quantum well, so that the system is not completely two dimensional and some kz dispersion
must occur. Secondly, the valence bands of typical semiconductors are degenerate so that
coupling between the valence band levels occurs, giving rise to departures from the simple
parabolic bands discussed below.
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Figure 9.14: Two dimensional density of
states g2D(E) for rectangular quantum well
structures.

A comparison between the energy dispersion relation E(~k) and the density of states
g(E) in two dimensions and three dimensions is shown in Fig. 9.15 together with a quasi
two–dimensional case, typical of actual quantum well samples. In the quasi–two dimen-
sional case, the E(~k) relations exhibit a small degree of dispersion along kz, leading to a
corresponding width in the steps of the density of states function shown in Fig. 9.15(b).

A generalization of the simple 2D density of states in Fig. 9.14 is also necessary to treat
the complex valence band of a typical III-V compound semiconductor. The E(~k) diagram
(where k⊥ is normal to kz) for the heavy hole and light hole levels can be calculated using
~k · ~p perturbation theory to be discussed later in the course.

The most direct evidence for bound states in quantum wells comes from optical absorp-
tion measurements (to be discussed later in the course) and resonant tunneling effects which
we discuss below.

9.9 Resonant Tunneling in Quantum Wells

Resonant tunneling (see Fig. 9.18) provides direct evidence for the existence of bound states
in quantum wells. We review first the background material for tunneling across poten-
tial barriers in semiconductors and then apply these concepts to the resonant tunneling
phenomenon.

The carriers in the quantum well structures are normally described in terms of the ef-
fective mass theorem where the wave functions for the carriers are given by the one electron
approximation. The effective mass equation is written in terms of slowly varying wavefunc-
tions corresponding to a slowly varying potential which satisfies Poisson’s equation when
an electric field is applied (e.g., a voltage is imposed across the quantum well structure).

Further simplifications that are made in treating the tunneling problem include:

1. The wavefunctions for the tunneling particle are expanded in terms of a single band
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Figure 9.15: Schematic diagrams of (a) energy dispersion and (b) density of states. Indicated
are the two–dimensional (dotted), three–dimensional (dashed), and intermediate (solid)
cases.

on either side of the junction.

2. Schrödinger’s equation is separated into two components, parallel and perpendicular
to the junction plane, leading to a 1–dimensional tunneling problem.

3. The eigenstates of interest have energies sufficiently near those of critical points in
the energy band structure on both sides of the interface so that the simplified form of
the effective mass theorem can be used.

4. The total energy, E, and the momentum parallel to the interface or perpendicular to
the layering direction, k⊥, are conserved in the tunneling process. Since the potential
acts only in the z–direction, the 1–dimensional Schrödinger equation becomes:

[

− h̄2

2m

d2

dz2
+ V (z) − E

]

ψe = 0 (9.41)

where V (z) is the electrostatic potential, and ψe is an envelope function. The wave function
ψe is subject, at an interface z = z1 (see Fig. 9.16), to the following boundary conditions
that guarantee current conservation:

ψe(z
−
1 ) = ψe(z

+
1 ) (9.42)

1

m1

d

dz
ψe

∣
∣
∣
∣
z−
1

=
1

m2

d

dz
ψe

∣
∣
∣
∣
z+
1

(9.43)

The current density for tunneling through a barrier becomes

Jz =
e

4π3h̄

∫

dkzd
2k⊥f(E)T (Ez)

dE

dkz
(9.44)
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Figure 9.16: Rectangular–potential model (a) used to describe the effect of an insulator, 2,
between two metals, 1 and 3. When a negative bias is applied to 1, electrons, with energies
up to the Fermi energy EF , can tunnel through the barrier. For small voltages, (b), the
barrier becomes trapezoidal, but at high bias (c), it becomes triangular.

where f(E) is the Fermi–Dirac distribution, and T (Ez) is the probability of tunneling
through the potential barrier. Here T (Ez) is expressed as the ratio between the transmitted
and incident probability currents.

If an external bias V is applied to the barrier (see Fig. 9.16), the net current flowing
through it is the difference between the current from left to right and that from right to
left. Thus, we obtain:

Jz =
e

4π3h̄

∫

dEzd
2k⊥[f(E) − f(E + eV )]T (Ez) (9.45)

where Ez represents the energy from the kz component of crystal momentum, i.e., Ez =
h̄2k2

z/(2m). Since the integrand is not a function of k⊥ in a plane normal to kz, we can
integrate over d2k⊥ by writing

dkxdky = d2k⊥ =
2m

h̄2 dE⊥ (9.46)

where E⊥ = h̄2k2
⊥/(2m) and after some algebra, the tunneling current can be written as,

Jz=
em

2π2h̄3

[

eV
∫ EF−eV
0 dEzT (Ez) +

∫ EF
EF−eV dEz(EF − Ez)T (Ez)

]

if eV ≤ EF

Jz=
em

2π2h̄3

∫ EF
0 dEz(EF − Ez)T (Ez) if eV ≥ EF

(9.47)

(see Fig. 9.16 for the geometry of the model) which can be evaluated as long as the tun-
neling probability through the barrier is known. We now discuss how to find the tunneling
probability.

An enhanced tunneling probability occurs for certain voltages as a consequence of the
constructive interference between the incident and the reflected waves in the barrier region
between regions 1 and 3. To produce an interference effect the wavevector ~k in the plane
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Figure 9.17: (a) Tunneling current through a rectangular barrier (like the one of Fig. 9.16a)
calculated as a function of bias for different values of m1, in the quantum well. (b) Compar-
ison of an exact calculation of the tunneling probability through a potential barrier under
an external bias with an approximate result obtained using the WKB method. The barrier
parameters are the same as in (a), and the energy of an incident electron, of mass 0.2m0,
is 0.05eV. (From the book of E.E. Mendez and K. von Klitzing, “Physics and Applications
of Quantum Wells and Superlattices”, NATO ASI Series, Vol. 170, p.159 (1987)).

wave solution eikz must have a real component so that an oscillating (rather than a decaying
exponential) solution is possible. To accomplish this, it is necessary for a sufficiently high
electric field to be applied (as in Fig. 9.16(c)) so that a virtual bound state is formed. As
can be seen in Fig. 9.17a, the oscillations are most pronounced when the difference between
the electronic mass at the barrier and at the electrodes is the largest. This interference phe-
nomenon is frequently called resonant Fowler–Nordheim tunneling and has been observed
in metal–oxide–semiconductor (MOS) heterostructures and in GaAs/Ga1−xAlxAs/GaAs
capacitors. Since the WKB method is semiclassical, it does not give rise to the resonant
tunneling phenomenon, which is a quantum interference effect.

For the calculation of the resonant tunneling phenomenon, we must therefore use the
quantum mechanical solution. In this case, it is convenient to use the transfer–matrix
method to find the tunneling probability. In region (#1) of Fig. 9.16, the potential V (z) is
constant and solutions to Eq. 9.41 have the form

ψe(z) = A exp(ikz) + B exp(−ikz) (9.48)

with
h̄2k2

2m
= E − V. (9.49)
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When E −V > 0, then k is real and the wave functions are plane waves. When E −V < 0,
then k is imaginary and the wave functions are growing or decaying waves. The boundary
conditions Eqs. 9.42 and 9.43 determine the coefficients A and B which can be described by
a (2 × 2) matrix R such that

(

A1

B1

)

= R

(

A2

B2

)

(9.50)

where the subscripts on A and B refer to the region index and R can be written as

R =
1

2k1m2





(k1m2 + k2m1) exp[i(k2 − k1)z1] (k1m2 − k2m1) exp[−i(k2 + k1)z1]

(k1m2 − k2m1) exp[i(k2 + k1)z1] (k1m2 + k2m1) exp[−i(k2 − k1)z1]





(9.51)
and the terms in R of Eq. 9.51 are obtained by matching boundary conditions as given in
Eqs. 9.42 and 9.43.

In general, if the potential profile consists of n regions, characterized by the potential
values Vi and the masses mi (i = 1, 2, . . . n), separated by n − 1 interfaces at positions zi

(i = 1, 2, . . . (n − 1)), then

(

A1

B1

)

= (R1R2 . . . Rn−1)

(

An

Bn

)

. (9.52)

The matrix elements of Ri are

(Ri)1,1=
(

1
2 + ki+1mi

2kimi+1

)

exp[i(ki+1 − ki)zi]

(Ri)1,2=
(

1
2 − ki+1mi

2kimi+1

)

exp[−i(ki+1 + ki)zi]

(Ri)2,1=
(

1
2 − ki+1mi

2kimi+1

)

exp[i(ki+1 + ki)zi]

(Ri)2,2=
(

1
2 + ki+1mi

2kimi+1

)

exp[−i(ki+1 − ki)zi]

(9.53)

where the ki are defined by Eq. 9.49. If an electron is incident from the left (region #1)
only a transmitted wave will appear in the last region #n, and therefore Bn = 0. The
transmission probability is then given by

T =

(
k1mn

knm1

) |An|2
|A1|2

. (9.54)

This is a general solution to the problem of transmission through multiple barriers. Under
certain conditions, a particle incident on the left can appear on the right essentially without
attenuation. This situation, called resonant tunneling, corresponds to a constructive inter-
ference between the two plane waves coexisting in the region between the barriers (quantum
well).

The tunneling probability through a double rectangular barrier is illustrated in Fig. 9.18.
In this figure, the mass of the particle is taken to be 0.067m0, the height of the barriers is
0.3eV, their widths are 50Å and their separations are 60Å. As observed in the figures, for
certain energies below the barrier height, the particle can tunnel without attenuation. These
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Figure 9.18: (a) Probability of tunneling through a double rectangular barrier as a function
of energy. The carrier mass is taken to be 0.1m0 in the barrier and 0.067m0 outside, and
the width of the quantum well is 60Å. (b) Tunneling probability through a double–barrier
structure, subject to an electric field of 1 × 105V/cm. The width of the left barrier is 50Å,
while that of the right barrier is varied between 50Å and 100Å. The peak at ∼ 0.16eV
corresponds to resonant tunneling through the first excited state (E1) of the quantum well.
The optimum transmission is obtained when the width of the right barrier is ∼ 75Å.
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energies correspond precisely to the eigenvalues of the quantum well; this is understandable,
since the solutions of Schrödinger’s equation for an isolated well are standing waves. When
the widths of the two barriers are different (see Fig. 9.18b), the tunneling probability does
not reach unity, although the tunneling probability shows maxima for incident energies
corresponding to the bound and virtual states.
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Chapter 10

Transport in Low Dimensional

Systems

References:

• Solid State Physics, Volume 44, Semiconductor Heterostructures and Nanostructures.
Edited by H. Ehrenreich and D. Turnbull, Academic Press (1991).

• Electronic transport in mesoscopic systems, Supriyo Datta, Cambridge University
Press, 1995.

10.1 Introduction

Transport phenomena in low dimensional systems such as in quantum wells (2D), quantum
wires (1D), and quantum dots (0D) are dominated by quantum effects not included in
the classical treatments based on the Boltzmann equation and discussed in Chapters 4-6.
With the availability of experimental techniques to synthesize materials of high chemical
purity and of nanometer dimensions, transport in low dimensional systems has become an
active current research area. In this chapter we consider some highlights on the subject of
transport in low dimensional systems.

10.2 Observation of Quantum Effects in Reduced Dimen-

sions

Quantum effects dominate the transport in quantum wells and other low dimensional sys-
tems such as quantum wires and quantum dots when the de Broglie wavelength of the
electron

λdB =
h̄

(2m∗E)1/2
(10.1)

exceeds the dimensions of a quantum structure of characteristic length Lz (λdB > Lz)
or likewise for tunneling through a potential barrier of length Lz. To get some order of
magnitude estimates of the electron kinetic energies E below which quantum effects become
important we look at Fig. 10.1 where a log-log plot of λdB vs E in Eq. 10.1 is shown for
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Figure 10.1: Plot of the electron de Broglie wavelength λdB vs the electron kinetic energy
E for GaAs (2) and InAs (¦).
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GaAs and InAs. From the plot we see that an electron energy of E ∼ 0.1 eV for GaAs
corresponds to a de Broglie wavelength of 200 Å. Thus wave properties for electrons can be
expected for structures smaller than λdB.

To observe quantum effects, the thermal energy must also be less than the energy level
separation, kBT < ∆E, where we note that room temperature corresponds to 25 meV. Since
quantum effects depend on the phase coherence of electrons, scattering can also destroy
quantum effects. The observation of quantum effects thus requires that the carrier mean
free path be much larger than the dimensions of the quantum structures (wells, wires or
dots).

The limit where quantum effects become important has been given the name of meso-

scopic physics. Carrier transport in this limit exhibits both particle and wave character-
istics. In this ballistic transport limit, carriers can in some cases transmit charge or energy
without scattering.

The small dimensions required for the observation of quantum effects can be achieved
by the direct fabrication of semiconductor elements of small dimensions (quantum wells,
quantum wires and quantum dots). Another approach is the use of gates on a field effect
transistor to define an electron gas of reduced dimensionality. In this context, negatively
charged metal gates can be used to control the source to drain current of a 2D electron
gas formed near the GaAs/AlGaAs interface as shown in Fig. 10.2. Between the dual gates
shown on this figure, a thin conducting wire is formed out of the 2D electron gas. Controlling
the gate voltage controls the amount of charge in the depletion region under the gates, as
well as the charge in the quantum wire. Thus lower dimensional channels can be made in
a 2D electron gas by using metallic gates. In the following sections a number of important
applications are made of this concept.

10.3 Density of States in Low Dimensional Systems

We showed in Eq. 8.40 that the density of states for a 2D electron gas is a constant for each
2D subband

g2D =
m∗

πh̄2 . (10.2)

This is shown in Fig. 10.3(a) where the inset is appropriate to the quantum well formed
near a modulation doped GaAs-AlGaAs interface. In the diagram only the lowest bound
state is occupied.

Using the same argument, we now derive the density of states for a 1D electron gas

N1D =
2

2π
(k) =

1

π
(k) (10.3)

which for a parabolic band E = En + h̄2k2/(2m∗) becomes

N1D =
2

2π
(k) =

1

π

(
2m∗(E − En)

h̄2

)1/2

(10.4)

yielding an expression for the density of states g1D(E) = ∂N1D/∂E

g1D(E) =
1

2π

(
2m∗

h̄2

)1/2

(E − En)−1/2. (10.5)
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Figure 10.2: (a) Schematic diagram of a lateral resonant tunneling field-effect transistor
which has two closely spaced fine finger metal gates; (b) schematic of an energy band
diagram for the device. A 1D quantum wire is formed in the 2D electron gas between the
gates.
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Figure 10.3: Density of states g(E) as a function of energy. (a) Quasi-2D density of states,
with only the lowest subband occupied (hatched). Inset: Confinement potential perpendic-
ular to the plane of the 2DEG. The discrete energy levels correspond to the bottoms of the
first and second 2D subbands. (b) Quasi-1D density of states, with four 1D subbands occu-
pied. Inset: Square-well lateral confinement potential with discrete energy levels indicating
the 1D subband extrema.

The interpretation of this expression is that at each doubly confined bound state level En

there is a singularity in the density of states, as shown in Fig. 10.3(b) where the first four
levels are occupied.

10.3.1 Quantum Dots

This is an example of a zero dimensional system. Since the levels are all discrete any
averaging would involve a sum over levels and not an integral over energy. If, however, one
chooses to think in terms of a density of states, then the DOS would be a delta function
positioned at the energy of the localized state. For more extensive treatment see the review
by Marc Kastner (Appendix D).

10.4 The Einstein Relation and the Landauer Formula

In the classical transport theory (Chapter 4) we related the current density ~j to the electric
field ~E through the conductivity σ using the Drude formula

σ =
ne2τ

m∗ . (10.6)

This equation is valid when many scattering events occur within the path of an electron
through a solid, as shown in Fig. 10.4(a). As the dimensions of device structures become
smaller and smaller, other regimes become important, as shown in Figs. 10.4(b) and 10.4(c).

To relate transport properties to device dimensions it is often convenient to rewrite the
Drude formula by explicitly substituting for the carrier density n and for the relaxation
time τ in Eq. 10.6. Writing τ = `/vF where ` is the mean free path and vF is the Fermi
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Figure 10.4: Electron trajectories characteristic of the diffusive (` < W, L), quasi-ballistic
(W < ` < L), and ballistic (W, L < `) transport regimes, for the case of specular boundary
scattering. Boundary scattering and internal impurity scattering (asterisks) are of equal
importance in the quasi-ballistic regime. A nonzero resistance in the ballistic regime results
from backscattering at the connection between the narrow channel and the wide 2DEG
regions. Taken from H. Van Houten et al. in “Physics and Technology of Submicron
Structures” (H. Heinrich, G. Bauer and F. Kuchar, eds.) Springer, Berlin, 1988.

168



velocity, and writing n = k2
F /(2π) for the carrier density for a 2D electron gas (2DEG) we

obtain

σ =
k2

F

2π
e2 `

m∗vF
=

k2
F e2`

2πh̄kF
=

e2

h
kF ` (10.7)

where e2/h is a universal constant and is equal to ∼ (26 kΩ)−1.
Two general relations that are often used to describe transport in situations where

collisions are not important within device dimensions are the Einstein relation and the
Landauer formula. We discuss these relations below. The Einstein relation follows from the
continuity equation

~j = eD~∇n (10.8)

where D is the diffusion coefficient and ~∇n is the gradient of the carrier density involved
in the charge transport. In equilibrium the gradient in the electrochemical potential ~∇µ is
zero and is balanced by the electrical force and the change in Fermi energy

~∇µ = 0 = −e ~E + ~∇n
dEF

dn
= −e ~E + ~∇n/g(EF ) (10.9)

where g(EF ) is the density of states at the Fermi energy. Substitution of Eq. 10.9 into
Eq. 10.8 yields

~j = eDg(EF )e ~E = σ ~E (10.10)

yielding the Einstein relation
σ = e2Dg(EF ) (10.11)

which is a general relation valid for 3D systems as well as systems of lower dimensions.
The Landauer formula is an expression for the conductance G which is the proportion-

ality between the current I and the voltage V ,

I = GV. (10.12)

For 2D systems the conductance and the conductivity have the same dimensions, and for a
large 2D conductor we can write

G = (W/L)σ (10.13)

where W and L are the width and length of the conducting channel in the current direction,
respectively. If W and L are both large compared to the mean free path `, then we are in
the diffusive regime (see Fig. 10.4(a)). However when we are in the opposite regime, the
ballistic regime, where ` > W, L, then the conductance is written in terms of the Landauer
formula which is obtained from Eqs. 10.7 and 10.13. Writing the number of quantum modes
N , then Nπ = kF W or

kF =
Nπ

W
(10.14)

and noting that the quantum mechanical transition probability coupling one channel to
another in the ballistic limit |tα,β |2 is π`/(2LN) per mode, we obtain the general Landauer
formula

G =
2e2

h

N∑

α,β

|tα,β |2. (10.15)

We will obtain the Landauer formula below for some explicit examples, which will make
the derivation of the normalization factor more convincing.
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Figure 10.5: Point contact conductance as a function of gate voltage at 0.6 K, obtained
from the raw data after subtraction of the background resistance. The conductance shows
plateaus at multiples of e2/πh̄. Inset: Point-contact layout [from B.J. van Wees, et al.,
Phys. Rev. Lett. 60, 848 (1988)].

10.5 One Dimensional Transport and Quantization of the

Ballistic Conductance

In the last few years one dimensional ballistic transport has been demonstrated in a two
dimensional electron gas (2DEG) of a GaAs-GaAlAs heterojunction by constricting the
electron gas to flow in a very narrow channel (see Fig. 10.5). Ballistic transport refers to
carrier transport without scattering. As we show below, in the ballistic regime, the conduc-
tance of the 2DEG through the constriction shows quantized behavior with the conductance
changing in quantized steps of (e2/πh̄) when the effective width of the constricting channel
is varied by controlling the voltages of the gate above the 2DEG. We first give a derivation
of the quantization of the conductance.

The current Ix flowing between source and drain (see Fig. 10.2) due to the contribution
of one particular 1D electron subband is given by

Ix = neδv (10.16)

where n is the carrier density (i.e., the number of carriers per unit length of the channel)
and δv is the increase in electron velocity due to the application of a voltage V . The carrier
density in 1D is

n =
2

2π
kF =

kF

π
(10.17)

and the gain in velocity δv resulting from an applied voltage V is

eV =
1

2
m∗(vF + δv)2 − 1

2
m∗v2

F = m∗vF δv +
1

2
m∗(δv)2. (10.18)

Retaining only the first order term in Eq. 10.18 yields

δv = eV/m∗vF (10.19)

170



so that from Eq. 10.16 we get for the source-drain current (see Fig. 10.5)

Ix =
kF

π
e

eV

m∗vF
=

e2

πh̄
V (10.20)

since h̄kF = m∗vF . This yields a conductance per 1D electron subband Gi of

Gi =
e2

πh̄
(10.21)

or summing over all occupied subbands i we obtain

G =
∑

i

e2

πh̄
=

ie2

πh̄
. (10.22)

Two experimental observations of these phenomena were simultaneously published [D.A.
Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko,
D.C. Peacock, D.A. Ritchie, and G.A.C. Jones, J. Phys. C: Solid State Phys. 21, L209 (1988);
and B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouvenhoven,
D. van der Marel, and C.T. Foxon, Phys. Rev. Lett. 60, 848 (1988)]. The experiments by
Van Wees et al. were done using ballistic point contacts on a gate structure placed over a
two-dimensional electron gas as shown schematically in the inset of Fig. 10.5. The width W
of the gate (in this case 2500 Å) defines the effective width W ′ of the conducting electron
channel, and the applied gate voltage is varied in order to control the effective width W ′.
Superimposed on the raw data for the resistance vs gate voltage is a collection of periodic
steps as shown in Fig. 10.5 after subtracting off the background resistance of 400 Ω.

There are several conditions necessary to observe perfect 2e2/h quantization of the 1D
conductance. One requirement is that the electron mean free path le be much greater than
the length of the channel L. This limits the values of channel lengths to L <5,000 Å even
though mean free path values are much larger, le=8.5 µm. It is important to note, however,
that le=8.5 µm is the mean free path for the 2D electron gas. When the channel is formed,
the screening effect of the 2D electron gas is no longer present and the effective mean free
path becomes much shorter. A second condition is that there are adiabatic transitions
at the inputs and outputs of the channel. This minimizes reflections at these two points,
an important condition for the validity of the Landauer formula to be discussed later in
this section. A third condition requires the Fermi wavelength λF = 2π/kF (or kF L > 2π)
to satisfy the relation λF < L by introducing a sufficient carrier density (3.6×1011cm−2)
into the channel. Finally, as discussed earlier, it is necessary that the thermal energy
kBT ¿ Ej −Ej−1 where Ej −Ej−1 is the subband separation between the j and j − 1 one
dimensional energy levels. Therefore, the quantum conductance measurements are done at
low temperatures (T <1 K).

The point contacts in Fig. 10.5 were made on high-mobility molecular-beam-epitaxy-
grown GaAs-AlGaAs heterostructures using electron beam lithography. The electron den-
sity of the material is 3.6 × 1011/cm2 and the mobility is 8.5 × 105cm2/V s (at 0.6 K).
These values were obtained directly from measurements of the devices themselves. For the
transport measurements, a standard Hall bar geometry was defined by wet etching. At
a gate voltage of Vg = −0.6 V the electron gas underneath the gate is depleted, so that
conduction takes place through the point contact only. At this voltage, the point contacts
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have their maximum effective width W ′
max, which is about equal to the opening W between

the gates. By a further decrease (more negative) of the gate voltage, the width of the point
contacts can be reduced, until they are fully pinched off at Vg = −2.2 V.

The results agree well with the appearance of conductance steps that are integral mul-
tiples of e2/πh, indicating that the conductance depends directly on the number of 1D
subbands that are occupied with electrons. To check the validity of the proposed explana-
tion for these steps in the conductance (see Eq. 10.22), the effective width W ′ for the gate
was estimated from the voltage Vg = −0.6 V to be 3600 Å, which is close to the geometric
value for W . In Fig. 10.5 we see that the average conductance varies linearly with Vg which
in turn indicates a linear relation between the effective point contact width W ′ and Vg.
From the 16 observed steps and a maximum effective point contact width W ′

max = 3600 Å,
an estimate of 220 Å is obtained for the increase in width per step, corresponding to λF /2.
Theoretical work done by Rolf Landauer nearly 20 years ago shows that transport through
the channel can be described by summing up the conductances for all the possible trans-
mission modes, each with a well defined transmission coefficient tnm. The conductance of
the 1D channel can then be described by the Landauer formula

G =
e2

πh̄

Nc∑

n,m=1

|tnm|2 (10.23)

where Nc is the number of occupied subbands. If the conditions for perfect quantization
described earlier are satisfied, then the transmission coefficient reduces to |tnm|2 = δnm.
This corresponds to purely ballistic transport with no scattering or mode mixing in the
channel (i.e., no back reflections).

A more explicit derivation of the Landauer formula for the special case of a 1D system
can be done as follows. The current flowing in a 1D channel can be written as

Ij =

∫ Ef

Ei

egj(E)vz(E)Tj(E)dE (10.24)

where the electron velocity is given by

m∗vz = h̄kz (10.25)

and

E = Ej +
h̄2k2

z

2m∗ (10.26)

while the 1D density of states is from Eq. 10.5 given by

gj(E) =
(2m∗)1/2

h(E − Eg)1/2
(10.27)

and Tj(E) is the probability that an electron injected into subband j with energy E will get
across the 1D wire ballistically. Substitution of Eqs. 10.25, 10.26 and 10.27 into Eq. 10.24
then yields

Ij =
2e

h

∫ Ej

Ei

Tj(E)dE =
2e2

h
Tj∆V (10.28)
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Figure 10.6: (a) Schematic illustration of the split-gate dual electron waveguide device.
The top plane shows the patterned gates at the surface of the MODFET structure. The
bottom plane shows the implementation of two closely spaced electron waveguides when
the gates (indicated by VGT , VGB and VGM ) are properly biased. Shading represents the
electron concentration. Also shown are the four ohmic contacts which allow access to the
inputs and outputs of each waveguide. (b) Schematic of the “leaky” electron waveguide
implementation. The bottom gate is grounded (VGB=0) so that only one waveguide is in
an “on” state. VGM is fixed such that only a small tunneling current crosses it. The current
flowing through the waveguide as well as the tunneling current (depicted by arrows) are
monitored simultaneously.

where we have noted that the potential energy difference is the difference between initial
and final energies e∆V = Ef − Ei. Summing over all occupied states j we then obtain the
Landauer formula

G =
2e2

h

∑

j

Tj . (10.29)

10.6 Ballistic Transport in 1D Electron Waveguides

Another interesting quantum-effect structure proposed and implemented by C. Eugster
and J. del Alamo is a split-gate dual electron waveguide device shown in Fig. 10.6 [C.C.
Eugster, J.A. del Alamo, M.J. Rooks and M.R. Melloch, Applied Physics Letters 60, 642
(1992)]. By applying the appropriate negative biases on patterned gates at the surface,
two electron waveguides can be formed at the heterointerface of a MODFET structure. As
shown in Fig. 10.6, the two electron waveguides are closely spaced over a certain length
and their separation is controlled by the middle gate bias (VGM ). The conductance of each
waveguide, shown in Fig. 10.7, is measured simultaneously and independently as a function
of the side gate biases (VGT and VGB) and each show the quantized 2e2/h conductance
steps. Such a device can be used to study 1D coupled electron waveguide interactions. An
electron directional coupler based on such a structure has also been proposed [J. del Alamo
and C. Eugster, Appl. Phys. Lett. 56, 78 (1990)]. Since each gate can be independently
accessed, various other regimes can be studied in addition to the coupled waveguide regime.

One interesting regime is that of a “leaky” electron waveguide [C.C. Eugster and J.A. del
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Figure 10.7: Conductance of
each waveguide in Fig. 10.6(a)
as a function of side gate bias
of an L = 0.5 µm, W = 0.3 µm
split-gate dual electron waveg-
uide device. The inset shows
the biasing conditions (i.e., in
the depletion regime) and the
direction of current flow for
the measurements.

Alamo, Physical Review Letters 67, 3586 (1991)]. For such a scheme, one of the side gates is
grounded so that the 2D electron gas underneath it is unaffected, as shown in Fig. 10.6(b).
The middle gate is biased such that only a small tunneling current can flow from one
waveguide to the other in the 2D electron gas. The other outer gate bias VGT is used to
sweep the subbands in the waveguide through the Fermi level. In such a scheme, there is
only one waveguide which has a thin side wall barrier established by the middle gate bias.
The current flowing through the waveguide as well as the current leaking out of the thin
middle barrier are independently monitored. Figure 10.8 shows the I − VGS characteristics
for the leaky electron waveguide implementation. As discussed earlier, conductance steps
of order 2e2/h are observed for the current flowing through the waveguide. However what
is unique to the leaky electron experiment is that the tunneling current leaking from the
thin side wall is monitored. As seen in Fig. 10.8, very strong oscillations in the tunneling
current are observed as the Fermi level is modulated in the waveguide. We show below that
the tunneling current is directly tracing out the 1D density of states of the waveguide.

An expression for the tunneling current IS2 flowing through the sidewall of the waveguide
can be obtained by the following integral,

IS2 = e
∑

j

∫ ∞

−∞
v⊥j(E−Ej)g1D,j(E−Ej)Tj(E−Eb)

[

f(E−EF −e∆V, T )−f(E−EF , T )

]

dE

(10.30)
where we have accounted for the contribution to the current from each occupied subband
j. Here Ej is the energy at the bottom of the jth subband and Eb is the height of the
tunneling energy barrier. The normal velocity against the tunneling barrier is v⊥j(E) =
h̄k⊥j/m∗. The transmission coefficient, Tj(E − Eb), to first order, is the same for the
different 1D electron subbands since the barrier height relative to the Fermi level EF is
fixed (see Fig. 10.9). The Fermi function, f , gives the distribution of electrons as a function
of temperature and applied bias ∆V between the input of the waveguide and the 2DEG on
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Figure 10.8: The waveguide current vs gate-source voltage characteristics of a leaky electron
waveguide implemented with the proper biases for the device. For this case one of the side-
gates in Fig. 10.6(b) is grounded so that only one leaky electron waveguide is on. IS1 is the
current flowing through the waveguide and IS2 is the current tunneling through the thin
middle side barrier. The bias voltage VDS between the contacts is 100 µV.
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Figure 10.9: Cross-section of
a leaky electron waveguide.
Shaded regions represent elec-
trons. The dashed line is the
Fermi level and the solid lines
depict the energy levels in the
waveguide. The three figures
are from top to bottom (a),
(b), (c) at increasingly nega-
tive gate-source voltage VGT .

.
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the other side of the tunneling barrier (see Fig. 10.9).

For low enough temperatures and small ∆V , we can approximate Eq. 10.30 by

IS2
∼= e2h̄

m∗
∑

j

k⊥jTj(EF − Eb)g1D,j(EF − Ej)∆V (10.31)

where k⊥j is a constant for each subband and has a value determined by the confining
potential. As seen by Eq. 10.31, the tunneling current IS2 is proportional to g1D,j(EF −Ej),
the 1D density of states (see Fig. 10.10a). Increasing VGT to less negative values sweeps the
subbands through the Fermi level as shown in Fig. 10.9 and since k⊥j and Tj(EF −Eb) are
constant for a given subband (see Fig. 10.10d), the 1D density of states g1D,j summed over
each subband, can be extracted from measurement of IS2 (see Fig. 10.10e).

Figure 10.9 shows a schematic of the cross-section of the waveguide for three different
values of the gate source voltage VGT . The middle gate bias VGM is fixed and is the same
for all three cases. The parabolic potential in Fig. 10.9 is a result of the fringing fields and
is characteristic of the quantum well for split-gate defined channels. By making VGT more
negative, the sidewall potential of the waveguide is raised with respect to the Fermi level.
As seen in Fig. 10.9, this results in having fewer energy levels below the Fermi level (i.e.,
fewer occupied subbands). In Fig. 10.9a, which corresponds to a very negative VGT , only
the first subband is occupied. At less negative values of VGT , the second subband becomes
occupied (Fig. 10.9b) and then the third (Fig. 10.9c) and so on. There is no tunneling
current until the first level has some carrier occupation. The tunneling current increases as
a new subband crosses below the Fermi-level. The difference between EF in the quantum
well (on the left) and in the metallic contact (on the right) is controlled by the bias voltage
between the input and output contacts of the waveguide VDS . In fact, a finite voltage VDS

and a finite temperature gives rise to lifetime effects and a broadening of the oscillations in
IS2 (see Fig. 10.10e).

A summary of the behavior of a leaky electron waveguide is shown in Fig. 10.10. Included
in this figure are (a) the 1D density of states g1D. The measurement of IS1 as shown in
Fig. 10.8 is modeled in terms of

∑
k‖g1D,j and the results for IS1(VGT ) which relate to the

steps in the conductance can be used to extract g1D as indicated in Figs. 10.10b and 10.10c.
In contrast, Figs. 10.10d and 10.10e indicate the multiplication of k⊥,j and g1D,j to obtain
∑

k⊥,jg1D,j summed over occupied levels which is measured by the tunneling current IS2

in Fig. 10.8. The 1D density of states g1D can then be extracted from either IS1 or IS2 as
indicated in Fig. 10.10.

10.7 Single Electron Charging Devices

By making even narrower channels it has been possible to observe single electron charging
in a nanometer field-effect transistor, shown schematically in Fig. 10.11. In studies, a metal
barrier is placed in the middle of the channel and the width of the metal barrier and the
gap between the two constricted gates are of very small dimensions.

The first experimental observation of single electron charging was by Meirav et al. [U.
Meirav, M.A. Kastner and S.J. Wind, Phys. Rev. Lett. 65, 771 (1990); see also M.A.
Kastner, Physics Today, page 24, January 1993], working with a double potential barrier
GaAs device, as shown in Fig. 10.12. The two dimensional gas forms near the GaAs-GaAlAs
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Figure 10.10: Summary of leaky electron waveguide phenomena. Top picture (a) represents
the 1D density of states for the waveguide. The two left pictures (b) and (c) are for the
current flowing through the waveguide (k‖ is the wavevector along waveguide). Quantized
conductance steps result from sweeping subbands through the Fermi level as IS1 in Fig. 10.8.
The two right hand pictures (d) and (e) are for the tunneling current (k⊥ is transverse
wavevector). Oscillations in the tunneling current IS2 in Fig. 10.8 arise from sweeping each
subband through the Fermi level.
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Figure 10.11: A split gate
nanometer field-effect transis-
tor, shown schematically. In
the narrow channel a 1D elec-
tron gas forms when the gate is
biased negatively. The poten-
tial of the 1D barrier is shown.

Figure 10.12: Schematic drawing of the device structure along with a scanning electron
micrograph of one of the double potential barrier samples. An electron gas forms at the top
GaAs-AlGaAs interface, with an electron density controlled by the gate voltage Vg. The
patterned metal electrodes on top define a narrow channel with two potential barriers.
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Figure 10.13: Periodic os-
cillations of the conductance
vs gate voltage Vg, mea-
sured at T ≈ 50mK on
a sample-dependent threshold
Vt. Traces (a) and (b) are
for two samples with the same
electrode geometry and hence
show the same period. Traces
(c) and (d) show data for
progressively shorter distances
between the two constrictions,
with a corresponding increase
in period. Each oscillation
corresponds to the addition of
a single electron between the
barriers.

interface. Each of the constrictions in Fig. 10.12 is 1000 Å long and the length of the channel
between constrictions is 1µm. When a negative bias voltage (Vb ∼ −0.5V) is applied to the
gate, the electron motion through the gates is constrained. At a threshold gate voltage of Vt,
the current in the channel goes to zero. This is referred to as Coulomb blockade. If the gate
voltage is now increased (positively) above Vt, a series of periodic oscillations are observed,
as shown in Fig. 10.13. The correlation between the period of the conductance oscillations
and the electron density indicates that a single electron is flowing through the double gated
structure per oscillation. The oscillations in Fig 10.13 show the same periodicity when
prepared under the same conditions [as in traces (a) and (b)]. As the length L0 between the
constrictions is reduced below 1µm, the oscillation period gets longer. To verify that they
had seen single electron charging behavior, Meirav et al. fit the experimental lineshape for
a single oscillation to the functional form for the conductance

G(µ) ∼ ∂F

∂E
∼ cosh−2

[
E − µ

2kBT

]

. (10.32)

where µ is the chemical potential, F (E − µ, T ) is the Fermi function and E is the single
electron energy in the 2DEG.
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